Processing math: 100%
Subalgebra A41+A11A16
19 out of 61
Computations done by the calculator project.

Subalgebra type: A41+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A41 .
Centralizer: A11 + T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A14
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0, 0), (0, 1, 0, -1, -1, 0), (1, 0, 0, -1, 0, -1)
Contained up to conjugation as a direct summand of: A41+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A41: (2, 2, 2, 2, 2, 2): 8, A11: (0, 1, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g11+g16, g17
Positive simple generators: 2g16+2g11, g17
Cartan symmetric matrix: (1/2002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (8002)
Decomposition of ambient Lie algebra: V4ω12V2ω1+ω2V2ω25V2ω14Vω25V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+2ψ1+2ψ2+4ψ3Vω2+2ψ1+4ψ2V4ψ1+2ψ3V2ω1+ω22ψ2+4ψ3V2ω12ψ1+2ψ2+2ψ3V4ω1V2ω2V2ω1Vω2+2ψ14ψ2+2ψ3Vω22ψ1+4ψ22ψ3V2ω1+ω2+2ψ24ψ33V0V2ω1+2ψ12ψ22ψ3Vω22ψ14ψ2V4ψ12ψ3V2ω12ψ12ψ24ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra.g3h3h5h4+h2h6h4+h1g3g10g2g14g8g15g18g16+g11g7g12g17g20g19g21
weight00000ω2ω2ω2ω22ω12ω12ω12ω12ω12ω22ω1+ω22ω1+ω24ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ12ψ30004ψ1+2ψ3ω22ψ14ψ2ω22ψ1+4ψ22ψ3ω2+2ψ14ψ2+2ψ3ω2+2ψ1+4ψ22ω12ψ12ψ24ψ32ω1+2ψ12ψ22ψ32ω12ω12ψ1+2ψ2+2ψ32ω1+2ψ1+2ψ2+4ψ32ω22ω1+ω2+2ψ24ψ32ω1+ω22ψ2+4ψ34ω1
Isotypic module decomposition over primal subalgebra (total 16 isotypic components).
Isotypical components + highest weightV4ψ12ψ3 → (0, 0, -4, 0, -2)V0 → (0, 0, 0, 0, 0)V4ψ1+2ψ3 → (0, 0, 4, 0, 2)Vω22ψ14ψ2 → (0, 1, -2, -4, 0)Vω22ψ1+4ψ22ψ3 → (0, 1, -2, 4, -2)Vω2+2ψ14ψ2+2ψ3 → (0, 1, 2, -4, 2)Vω2+2ψ1+4ψ2 → (0, 1, 2, 4, 0)V2ω12ψ12ψ24ψ3 → (2, 0, -2, -2, -4)V2ω1+2ψ12ψ22ψ3 → (2, 0, 2, -2, -2)V2ω1 → (2, 0, 0, 0, 0)V2ω12ψ1+2ψ2+2ψ3 → (2, 0, -2, 2, 2)V2ω1+2ψ1+2ψ2+4ψ3 → (2, 0, 2, 2, 4)V2ω2 → (0, 2, 0, 0, 0)V2ω1+ω2+2ψ24ψ3 → (2, 1, 0, 2, -4)V2ω1+ω22ψ2+4ψ3 → (2, 1, 0, -2, 4)V4ω1 → (4, 0, 0, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g3
Cartan of centralizer component.
h3
h5h4+h2
h6h4+h1
g3
g10
g8
g2
g14
g14
g2
g8
g10
g15
g4
g12
g18
g9
g7
Semisimple subalgebra component.
g16g11
h6+h5+h4+h3+h2+h1
g11+g16
g7
g9
g18
g12
g4
g15
Semisimple subalgebra component.
g17
h5+h4+h3+h2
2g17
g20
g13
g6
g1
g5
g19
g19
g5
g1
g6
g13
g20
g21
g16+g11
h6h5+h4+h3+h2+h1
3g11+3g16
6g21
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω2
0
2ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
4ω1
2ω1
0
2ω1
4ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ12ψ304ψ1+2ψ3ω22ψ14ψ2
ω22ψ14ψ2
ω22ψ1+4ψ22ψ3
ω22ψ1+4ψ22ψ3
ω2+2ψ14ψ2+2ψ3
ω2+2ψ14ψ2+2ψ3
ω2+2ψ1+4ψ2
ω2+2ψ1+4ψ2
2ω12ψ12ψ24ψ3
2ψ12ψ24ψ3
2ω12ψ12ψ24ψ3
2ω1+2ψ12ψ22ψ3
2ψ12ψ22ψ3
2ω1+2ψ12ψ22ψ3
2ω1
0
2ω1
2ω12ψ1+2ψ2+2ψ3
2ψ1+2ψ2+2ψ3
2ω12ψ1+2ψ2+2ψ3
2ω1+2ψ1+2ψ2+4ψ3
2ψ1+2ψ2+4ψ3
2ω1+2ψ1+2ψ2+4ψ3
2ω2
0
2ω2
2ω1+ω2+2ψ24ψ3
ω2+2ψ24ψ3
2ω1ω2+2ψ24ψ3
2ω1+ω2+2ψ24ψ3
ω2+2ψ24ψ3
2ω1ω2+2ψ24ψ3
2ω1+ω22ψ2+4ψ3
ω22ψ2+4ψ3
2ω1ω22ψ2+4ψ3
2ω1+ω22ψ2+4ψ3
ω22ψ2+4ψ3
2ω1ω22ψ2+4ψ3
4ω1
2ω1
0
2ω1
4ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ12ψ3M0M4ψ1+2ψ3Mω22ψ14ψ2Mω22ψ14ψ2Mω22ψ1+4ψ22ψ3Mω22ψ1+4ψ22ψ3Mω2+2ψ14ψ2+2ψ3Mω2+2ψ14ψ2+2ψ3Mω2+2ψ1+4ψ2Mω2+2ψ1+4ψ2M2ω12ψ12ψ24ψ3M2ψ12ψ24ψ3M2ω12ψ12ψ24ψ3M2ω1+2ψ12ψ22ψ3M2ψ12ψ22ψ3M2ω1+2ψ12ψ22ψ3M2ω1M0M2ω1M2ω12ψ1+2ψ2+2ψ3M2ψ1+2ψ2+2ψ3M2ω12ψ1+2ψ2+2ψ3M2ω1+2ψ1+2ψ2+4ψ3M2ψ1+2ψ2+4ψ3M2ω1+2ψ1+2ψ2+4ψ3M2ω2M0M2ω2M2ω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3M2ω1ω2+2ψ24ψ3M2ω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3M2ω1ω2+2ψ24ψ3M2ω1+ω22ψ2+4ψ3Mω22ψ2+4ψ3M2ω1ω22ψ2+4ψ3M2ω1+ω22ψ2+4ψ3Mω22ψ2+4ψ3M2ω1ω22ψ2+4ψ3M4ω1M2ω1M0M2ω1M4ω1
Isotypic characterM4ψ12ψ33M0M4ψ1+2ψ3Mω22ψ14ψ2Mω22ψ14ψ2Mω22ψ1+4ψ22ψ3Mω22ψ1+4ψ22ψ3Mω2+2ψ14ψ2+2ψ3Mω2+2ψ14ψ2+2ψ3Mω2+2ψ1+4ψ2Mω2+2ψ1+4ψ2M2ω12ψ12ψ24ψ3M2ψ12ψ24ψ3M2ω12ψ12ψ24ψ3M2ω1+2ψ12ψ22ψ3M2ψ12ψ22ψ3M2ω1+2ψ12ψ22ψ3M2ω1M0M2ω1M2ω12ψ1+2ψ2+2ψ3M2ψ1+2ψ2+2ψ3M2ω12ψ1+2ψ2+2ψ3M2ω1+2ψ1+2ψ2+4ψ3M2ψ1+2ψ2+4ψ3M2ω1+2ψ1+2ψ2+4ψ3M2ω2M0M2ω2M2ω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3M2ω1ω2+2ψ24ψ3M2ω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3M2ω1ω2+2ψ24ψ3M2ω1+ω22ψ2+4ψ3Mω22ψ2+4ψ3M2ω1ω22ψ2+4ψ3M2ω1+ω22ψ2+4ψ3Mω22ψ2+4ψ3M2ω1ω22ψ2+4ψ3M4ω1M2ω1M0M2ω1M4ω1

Semisimple subalgebra: W_{10}+W_{13}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (400.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 774 arithmetic operations while solving the Serre relations polynomial system.