Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | g−3 | h3 | −h5−h4+h2 | −h6−h4+h1 | g3 | g10 | g2 | g14 | g8 | g15 | g18 | g16+g11 | g7 | g12 | g17 | g20 | g19 | g21 |
weight | 0 | 0 | 0 | 0 | 0 | ω2 | ω2 | ω2 | ω2 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω2 | 2ω1+ω2 | 2ω1+ω2 | 4ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ1−2ψ3 | 0 | 0 | 0 | 4ψ1+2ψ3 | ω2−2ψ1−4ψ2 | ω2−2ψ1+4ψ2−2ψ3 | ω2+2ψ1−4ψ2+2ψ3 | ω2+2ψ1+4ψ2 | 2ω1−2ψ1−2ψ2−4ψ3 | 2ω1+2ψ1−2ψ2−2ψ3 | 2ω1 | 2ω1−2ψ1+2ψ2+2ψ3 | 2ω1+2ψ1+2ψ2+4ψ3 | 2ω2 | 2ω1+ω2+2ψ2−4ψ3 | 2ω1+ω2−2ψ2+4ψ3 | 4ω1 |
Isotypical components + highest weight | V−4ψ1−2ψ3 → (0, 0, -4, 0, -2) | V0 → (0, 0, 0, 0, 0) | V4ψ1+2ψ3 → (0, 0, 4, 0, 2) | Vω2−2ψ1−4ψ2 → (0, 1, -2, -4, 0) | Vω2−2ψ1+4ψ2−2ψ3 → (0, 1, -2, 4, -2) | Vω2+2ψ1−4ψ2+2ψ3 → (0, 1, 2, -4, 2) | Vω2+2ψ1+4ψ2 → (0, 1, 2, 4, 0) | V2ω1−2ψ1−2ψ2−4ψ3 → (2, 0, -2, -2, -4) | V2ω1+2ψ1−2ψ2−2ψ3 → (2, 0, 2, -2, -2) | V2ω1 → (2, 0, 0, 0, 0) | V2ω1−2ψ1+2ψ2+2ψ3 → (2, 0, -2, 2, 2) | V2ω1+2ψ1+2ψ2+4ψ3 → (2, 0, 2, 2, 4) | V2ω2 → (0, 2, 0, 0, 0) | V2ω1+ω2+2ψ2−4ψ3 → (2, 1, 0, 2, -4) | V2ω1+ω2−2ψ2+4ψ3 → (2, 1, 0, -2, 4) | V4ω1 → (4, 0, 0, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ1−2ψ3 | 0 | 4ψ1+2ψ3 | ω2−2ψ1−4ψ2 −ω2−2ψ1−4ψ2 | ω2−2ψ1+4ψ2−2ψ3 −ω2−2ψ1+4ψ2−2ψ3 | ω2+2ψ1−4ψ2+2ψ3 −ω2+2ψ1−4ψ2+2ψ3 | ω2+2ψ1+4ψ2 −ω2+2ψ1+4ψ2 | 2ω1−2ψ1−2ψ2−4ψ3 −2ψ1−2ψ2−4ψ3 −2ω1−2ψ1−2ψ2−4ψ3 | 2ω1+2ψ1−2ψ2−2ψ3 2ψ1−2ψ2−2ψ3 −2ω1+2ψ1−2ψ2−2ψ3 | 2ω1 0 −2ω1 | 2ω1−2ψ1+2ψ2+2ψ3 −2ψ1+2ψ2+2ψ3 −2ω1−2ψ1+2ψ2+2ψ3 | 2ω1+2ψ1+2ψ2+4ψ3 2ψ1+2ψ2+4ψ3 −2ω1+2ψ1+2ψ2+4ψ3 | 2ω2 0 −2ω2 | 2ω1+ω2+2ψ2−4ψ3 ω2+2ψ2−4ψ3 2ω1−ω2+2ψ2−4ψ3 −2ω1+ω2+2ψ2−4ψ3 −ω2+2ψ2−4ψ3 −2ω1−ω2+2ψ2−4ψ3 | 2ω1+ω2−2ψ2+4ψ3 ω2−2ψ2+4ψ3 2ω1−ω2−2ψ2+4ψ3 −2ω1+ω2−2ψ2+4ψ3 −ω2−2ψ2+4ψ3 −2ω1−ω2−2ψ2+4ψ3 | 4ω1 2ω1 0 −2ω1 −4ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ1−2ψ3 | M0 | M4ψ1+2ψ3 | Mω2−2ψ1−4ψ2⊕M−ω2−2ψ1−4ψ2 | Mω2−2ψ1+4ψ2−2ψ3⊕M−ω2−2ψ1+4ψ2−2ψ3 | Mω2+2ψ1−4ψ2+2ψ3⊕M−ω2+2ψ1−4ψ2+2ψ3 | Mω2+2ψ1+4ψ2⊕M−ω2+2ψ1+4ψ2 | M2ω1−2ψ1−2ψ2−4ψ3⊕M−2ψ1−2ψ2−4ψ3⊕M−2ω1−2ψ1−2ψ2−4ψ3 | M2ω1+2ψ1−2ψ2−2ψ3⊕M2ψ1−2ψ2−2ψ3⊕M−2ω1+2ψ1−2ψ2−2ψ3 | M2ω1⊕M0⊕M−2ω1 | M2ω1−2ψ1+2ψ2+2ψ3⊕M−2ψ1+2ψ2+2ψ3⊕M−2ω1−2ψ1+2ψ2+2ψ3 | M2ω1+2ψ1+2ψ2+4ψ3⊕M2ψ1+2ψ2+4ψ3⊕M−2ω1+2ψ1+2ψ2+4ψ3 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2+2ψ2−4ψ3⊕Mω2+2ψ2−4ψ3⊕M2ω1−ω2+2ψ2−4ψ3⊕M−2ω1+ω2+2ψ2−4ψ3⊕M−ω2+2ψ2−4ψ3⊕M−2ω1−ω2+2ψ2−4ψ3 | M2ω1+ω2−2ψ2+4ψ3⊕Mω2−2ψ2+4ψ3⊕M2ω1−ω2−2ψ2+4ψ3⊕M−2ω1+ω2−2ψ2+4ψ3⊕M−ω2−2ψ2+4ψ3⊕M−2ω1−ω2−2ψ2+4ψ3 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ1−2ψ3 | 3M0 | M4ψ1+2ψ3 | Mω2−2ψ1−4ψ2⊕M−ω2−2ψ1−4ψ2 | Mω2−2ψ1+4ψ2−2ψ3⊕M−ω2−2ψ1+4ψ2−2ψ3 | Mω2+2ψ1−4ψ2+2ψ3⊕M−ω2+2ψ1−4ψ2+2ψ3 | Mω2+2ψ1+4ψ2⊕M−ω2+2ψ1+4ψ2 | M2ω1−2ψ1−2ψ2−4ψ3⊕M−2ψ1−2ψ2−4ψ3⊕M−2ω1−2ψ1−2ψ2−4ψ3 | M2ω1+2ψ1−2ψ2−2ψ3⊕M2ψ1−2ψ2−2ψ3⊕M−2ω1+2ψ1−2ψ2−2ψ3 | M2ω1⊕M0⊕M−2ω1 | M2ω1−2ψ1+2ψ2+2ψ3⊕M−2ψ1+2ψ2+2ψ3⊕M−2ω1−2ψ1+2ψ2+2ψ3 | M2ω1+2ψ1+2ψ2+4ψ3⊕M2ψ1+2ψ2+4ψ3⊕M−2ω1+2ψ1+2ψ2+4ψ3 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2+2ψ2−4ψ3⊕Mω2+2ψ2−4ψ3⊕M2ω1−ω2+2ψ2−4ψ3⊕M−2ω1+ω2+2ψ2−4ψ3⊕M−ω2+2ψ2−4ψ3⊕M−2ω1−ω2+2ψ2−4ψ3 | M2ω1+ω2−2ψ2+4ψ3⊕Mω2−2ψ2+4ψ3⊕M2ω1−ω2−2ψ2+4ψ3⊕M−2ω1+ω2−2ψ2+4ψ3⊕M−ω2−2ψ2+4ψ3⊕M−2ω1−ω2−2ψ2+4ψ3 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 |